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A complete system of relations, which govern the bending stress--strain state of non-uniformly heated three-layer rods with an 
asymmetric structure, a stiff compressible filler and delamination-type defects on the surfaces of contact between the carrying 
layers and the filler, is constructed by a variational method. These relations include the equilibrium differential equations in an 
invariant form for the whole domain of integration, the end conditions, the matching conditions on the boundaries of the defect- 
free and defective domains and elasticity relations. The initial equations of equilibrium in terms of the forces and moments are 
reduced to normal systems of differential equations in terms of the generalized forces and displacements which are convenient 
for the numerical solution. 

A review of result.,; in the theory of laminated rods, plates and shells which takes account of interlayer 
defects and imperfections in the contact between the layers of the delamination type has been given 
in [1]. The majority of papers published on this problem have been concerned with investigating stability 
and edge effects. The stress--strain state has not been studied sufficiently. In this paper, a model is 
proposed which enables us to extend the theory of  three-layer, thin-walled structures with ideal adhesion 
between the layers [2] to the case when the contact between the layers is non-ideal. 

1. I N I T I A L  A S S U M P T I O N S  

The static loading of non-uniformly heated, three-layer rods with thin elastic isotropic layers of  
different thickness and a transversely isotropic filler is considered. Bernoulli's hypotheses are assumed 
to hold in the case of the outer layers. In accordance with the terminology established in the theory of 
three-layer structures, the filler is assumed to,be rigid (carrying longitudinal forces and moments) and, 
also, transmits transverse shear and transverse normal strains and stresses. It is assumed that there are 
defective regions which are simulated by non-propagating shear layer separations for which, in the 
surfaces of contact between the outer layers and the filler, a discontinuity solely in the longitudinal 
components of the displacement vector is characteristic [3]. 

The rod is assumed to be subjected to transverse loads q l ( x )  and q2(x)  (1 and 2 are the numbers of 
the external supporting layers) which are distributed over the surfaces of the carrying layers and the 
rod is non-unifornfly heated to a specified temperature T(x,  z )  throughout its length and thickness. 

Henceforth, x is the longitudinal coordinate of the rod (0 < x < l), z is the transverse coordinate, hi, 
h2, h 3 = 2C are the thicknesses of the first and second supporting layers and of the filler respectively, 
and Ax k = x k - x  k (k = 1, 2) is the length of the layer separation (Fig. 1). 

Furthermore, the following assumptions are made which define the model employed for the 
deformation of  a three-layer rod with separation of the layers. 

1. The normal displacements throughout the thickness of the filler are distributed linearly [4] 

w 3 = w + z c - t v  (1.1) 

1 2 where w = 1/2(w + w ) is the mean deflection of the filler, w k is the deflection of the kth layer 
(k = 1, 2, 3) and o = 1/2(w 1 - w 2) is a function which characterizes the compression of the filler. In 
particular, w 1 = w 2 and a) = 0 for an incompressible filler. 

2. Continuity of the longitudinal and normal displacements on passing from one layer to another is 
ensured in domains where there is ideal contact between the layers. 

?Prikl. Mat. Mekh. Vol. 59, No. 3, pp. 475-484, 1995. 

449 



450 E.I.  Grigolyuk et al. 

2 '  

D 

- ' - 7 "  

I 

.~ -rz z 

L_._ ¢' 

21L I 

Fig. 1. 

~..Z" 

3. The normal and longitudinal displacements are assumed to be continuous throughout the thickness 
of the three-layer stack over the whole of the domain 0 < x < I only at the initial stage of deformation 
until the shear stresses ~k3 (k = 1, 2), which, in the domains where [ t~ ]  delamination occurs, are 
transmitted from the carrying layers to the filler, exceed the limiting permissible values of for the filler 
material which are determined using the Coulomb-Amonton law 

k , 3  k 3 ^ k , 3  • 3 
~=  ~< [~xi ] = ~,= + f k ~  (1.2) 

In (1.2), ~ are the limiting values of the shear stresses for the given material that characterize the 
shear resistance of the contacting layers, which is independent of the normal pressure, t~  are the normal 
stresses on the boundary of contact between the filler and the supporting layers, andfk are the friction 

• A k 3  . coefficients for the edges of the layer separations. Some estimates of 6~ for various materials are given 
in [5]. 

When the interlayer shear stresses exceed the permissible value, a slip occurs between the layers (the 
relative displacements of the layers in domains of layer separation) and interlayer shear forces 
xk, 3, k = 1, 2 manifest themselves (Fig. 1). 

4. By analogy with the theory of composite rods with elastic-compliant shear links [6], it is assumed, 
in view of the smallness of the deformations, that the interlayer shear forces are proportional to the 
relative displacement of the layers in regions of layer separation. Then, in the case of the positive 
direction of loading which has been adopted, the quantities x k' 3 will be positive if they are directed as 
shown in Fig. 1 and they are equal to 

xk'3(x) = Xk(. k - .3~1 =~_.~+. c, xf ~< x ~ x~ (1.3) 

where 7~ are specified constants which are similar in their meaning to the coefficients of rigidity of 
interfaces in the theory of composite rods. 

Relations (1.3) can be extended to the case when there is a non-linear relation between the forces 
x~, 3 and the relative displacements of the layers in regions of layer separation. 

2. DISPLACEMENTS,  STRAINS AND STRESSES 

On integrating Cauchy's relation for the transverse shear strains in the filler e3~ = Ou3/Oz +0w3//tr and 
taking account of the linear distribution of the normal displacements throughout the thickness of the 
central layer (1.1) which has been assumed and the conditions of continuity of the displacements on the 
boundaries of contact of the layers, and, also, on introducing Ul and u2 as additional unknown displace- 
ments of the carrying layers in the regions of layer separation, the distribution of the longitudinal and 
normal displacements in the layers of a three-layer rod can be represented in the following invariant form 



A model of a non-uniformly heated three-layer rod deformation with delaminations 451 

the normal displacements when x e [0,/] 

W I ---- W + 1.) 

W 2 = W - -  1.) 

W 3 = W + 2 C - 1 1 . )  

(-c ~< z <~ c + lq) 

( - c -  h2 ~< z ~< -c) 

(-c ~< z ~< c) 

(2.1) 

the longitudinal displacements when x ~ [0,/] (the prime denotes the derivatives with respect to x) 

uk =uk ~-[Z+(--I)kc][w--(--I)k~]" (k = 1, 2) 

tt  3 ----- II + ~ . ( 0 ~  3 t I "~ - I  t - w - ~ z - c  ~ ) (2.2) 

Here u are the longitudinal displacements of the neutral layer of the filler and et 3 = e 3 is the angle 
of transverse shear in the filler. In regions where there is ideal contact between the layers So the 
displacements u ~ are given by the formulae [4] 

u~ = u 3 [z=(_l),÷lc = u - ( - I ) ~ c ( C X  3 - w ' ) - 1 / 2 c ~ '  (k = 1,2) (2.3) 

The longitudinal components of the total strain of the layers and the transverse shear strains and 
compression in a transverse direction for the filler in the whole of the domain have the form 

e ~ = u "  t - [ z + ( - l ) ~ c l [ w - ( - l ) t ~ l ~ ]  "" ( k = 1 , 2 )  

V- 3 = u' + Z(O¢. 3 - w" ) - ~ Z2C - ' '0 ' '  (2.4)  

3 i?_.3 = Exz = O~ 3, ~ 19C -1 

By the Hooke-Neumann law, the normal stresses in the carrying isotropic layers are determined by 
the expressions 

k E,(e~ a~T) (k=l ,2)  (2.5) 

where Ek and CXk are the modulus of elasticity and the coefficient of linear thermal expansion of the 
kth carrying layer and T(x, z) is the specified temperature. 

The thermoelasticity relations for a transversely isotropic compressible filler can be represented in 
the form 

3 3 v~e~-V~rCt3T) O x = E 3 ( v I I E x  + _ ~. 

O3xz = G 3  ~3,  v i i  = l / ( l - v l v 2 )  

V12 =VI  / ( I - - v I V 2 ) ,  V13 = V 2 / ( I - - v I V 2 )  

v .  =vl, +v,2c~/o~3. v~_r =vi~_ +vl la~/~,  

(2.6) 

Here, E3 and tx3 are the modulus of elasticity and the coefficient of linear thermal expansion in the 
isotropic plane, G3 is the shear modulus, E~ 3 is the modulus of elasticity of the flier in the transverse 
direction and Vl and v2 are Poisson's ratios of the filler material which characterize the reduction in 
the dimensions in l~he plane of isotropy when the material is stretched in a transverse direction and the 
reduction in the dJimensions in the transverse direction when the material is stretched in the plane of 
isotropy, and a 3 is the coefficient of linear thermal expansion of the filler material in the transverse 
direction. 
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3. THE EQUATIONS OF E Q U I L I B R I U M  AND BOUNDARY 
CONDITIONS 

The equations of equilibrium of a three-layer bar with separations of the layers under bending can 
be obtained from the extended Lagrange variational equation 

8:9 = 81-I - ~)Aq - 6A, = 0 (3.1) 

in which, apart from the variation in the potential energy of deformation of the rod ~irI and the variation 
of the work of the external surface load 8Aq, the variation in the work of the interlayer shear forces 
X.k, 3 for the corresponding relative displacements of the layers in the delamination regions, &4x, is also 
taken into account. 

The potential energy of deformation of a three-layer bar, taking into account its transverse shears 
and compression in the filler, is equal to 

d x 3  -~ H = b o!,.emx dz + I 2 2 3 3 3 3 + o'ze'z dz (3.2) t~.texdz + Oxe x +O~.zexz 
0 L c - c - I ~  -c 

Using relationships (2.4)--(2.6), we can reduce the expression for the potential energy of 
deformation to the form 

Here 

l ^ 2 

r l = ! [ N u ' + . f t ( a 3 ) ' - ~ w " - [ . x ) , ' + Q ~ a  3 +c-'Q3x)]dx+ Y~ INtu~dx (3.3) 
k=Isk,3  

I Q = N _ N  d, h = H - H  't, I V I = M - M  d, £ = L - L  d (3.4) 

are the total specific forces and moments in a three-layer bar with separations of the layers. 
The quantifies N, If, M and L, occurring on the right-hand side of formulae (3.4), are the corres- 

ponding force factors in a three-layer rod when there is no separation of the layers [4] 

3 
N =  ~ , N  k, H = M S  +c (N  j - N  2) 

k = l  

3 
M =  ~,M~ + c ( N  t - N 2 ) ,  L = MI - M2 + y2c(Nt + NX)+G3 

k = l  

(3,5) 

where N is the total longitudinal force in a three-layer rod, M is the total bending moment in the three- 
layer rod with respect to the neutral line of the filler, H is the bending moment, which is determined 
by the transverse shear deformations in the filler (the shear moment) and L is the bending moment 
caused by taking the compressibility of the fdler into account. 

In this case, the specific forces and moments in the separate layers of a three-layer bar are 

( : + l l  I - c  c 

N' = b f o! dz, N 2 = b f o dz, N = b I ° 'lz 
t" - ~ ' - - h  2 - c  

c + h  I = - f  . c . 
M ' = b  I o ! , ( z - c ) d z ,  M'- b o~( z+c)dz ,  M 3 = b l o 3 z d z  (3.6) 

c - c - h  2 - c  

t: 
G3 b '~ ~ 2 3 = b ~ ~ 03 c tY,.dz, b ~ a~dz = - -  J a ; z  dz, Q~ = 

2c_,. " _,: ~ -c ~ 

Here, G 3 is the additional second-order bending moment which appears when the compressibility 
3 3 of the filler is taken into account, Qx and Qz are transverse forces which are sensed by the filler and 

caused by the transverse shear and the transverse normal strains in the central layer, respectively. 
The additional force factors N a, H a, M a, L d in (3.4), which occur in a three-layer rod due to defects 

in the surfaces of contact between layers, have a different form depending on the number and the relative 
arrangement of the delamination. 
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The final expressions for the total forces and moments for the various ways of arranging the layer 
separations with respect to one another are determined by the formulae: 

in the region of a first isolated layer separation S~' 3 

~¢ = N 2 + N 3, t t  = M 3 - c N  2 

3 
1~I= ~ ' ~ M k - c N  2, L = M I - M 2  +G3 +I//2cN2 

k=l 

in the region of a second isolated separation of the layers S~ 3 

N = N I + N  3, f I =  M3 + cN I 

(3.7) 

3 
l~'l= ~ M t  +cN 1, L=MJ-M2 +Ga +~2 cNI 

k=l 

and in the region of overlap of the layer separations S~' 3 V $,]' 3 

(3.8) 

3 
~/=N 3, /~=M 3, ~l=y~M k, L = M ' - M 2 + G  3 (3.9) 

k=l 

In the limiting case of a three-layer rod with ideal adhesion between the layers (taking account of 
transverse shears and the compressibility of the fdler), the total forces and moments will correspond 
to those introducecl in [4]. 

On integrating expression (3.3) by parts and analysing the terms outside the integral, we find that 
the generalized forces and displacement of a three-layer rod with delamination must be chosen as follows: 

III II 2 U 0[ 3 W "0 t W 1) 

Note that the ~dmown interlayer shear forces x k' 3 due to interaction between the layers in regions 
where there is separation of the layers are determined in terms of the longitudinal displacements on 
the boundaries of contact of the defective regions using formulae (1.3). Hence, the number of basic 
unknowns in the problem of the bending of a three-layer rod with layer separation defects is equal 
to 16.  

The work A a of the external distributed surface loads q 1 (X) and q2(x) which are applied to the surface 
z = c + hi andz = --c + --h2, respectively (see F i g .  1) ,  and the workA~ of the interlayer contact forces 
in regions where layer separation occurs are equal to 

l 2 
A=Aq+A t = j(qlw, +q2w2)dx+ y. j .l:t.3(ut~ 3 - u  )lz=(._l),+i,. dx = 

0 k= l~  ,3 

I 

= f[(ql +q2)w+(ql - q2)X)] dx+ 
0 

-t-~. I it t - u + ( - l )  k O t 3 - ( - I ) k w ' +  dx (3.10) 
k = I sk,3 [ 

(relationships (1.3), (2.1)-(2.3) and (2.6) have been taken into account here). On varying II, A# andAt 
while taking account of the expressions for the total and generalized moments and forces in the different 
regions of the bar according to (3.7)-(3.9), we obtain an extended Lagrange variational equation in 
the form 

~i3 = - f [N'~u + (H' - Q~)~ot3.+ (-M" + ql - q2 )Sw + 
s, 

2 
+(L"'-c-IQ~ +ql -q2)$x)] dx - ~ ~{((Nt)'+xt'3)$ltt +((N3)'+(N3-/¢) " -  

k=ls~'3 
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_Zt,3)Su + [/4" + (-1)'` Zk,3 _ Q~ ]~i~3 + [~,,  + (_!)'` c(x '`'3)" + ql + q2 ]Sw + 

+[£ , ,  ½c(x, ,3) ,  -i ~ - - c  Q~ + q l - q 2 ] ~ }  dx+ 

+ ( N f u  + HSct 3 - M~$w' + M ' S w  - LSg" + L'SI)) s,. + 

2 k 
+ E {U &,'` +/V&, + h 6 a  3 - M6w' + [M" - ( - ! )  k a '`'~ ]Sw - 

k=l  

+(L,+ r:i --0 (3.11) 

where S k' 3 are the domains where there is layer separation (k = 1, 2) and Sc are the defect-free domains. 
By virtue of the arbitrariness in the variations of the displacements, the equilibrium equations for 

the various regions of the rod (defect-free regions and regions with layer separation) and, also, the 
conditions at the ends of the bar and the matching conditions on the boundaries of contact between 
the defect-free and defective regions follow from the extended Lagrange variational equation. 

In the general case when the regions of layer separation are arbitrarily located with respect to one 
another, the systems of equilibrium equations for the defect-free regions, for regions with isolated layer 
separations and for the region with overlapping layer separations must be simultaneously solved while 
taking account of the corresponding end conditions and the matching conditions. 

By introducing the unit step functions 

, an "  = ,-/'` (.,, - x ~ ) -  t,,'` (.,. - .,-~) = o, x ~ [o;  x ~ [ u l x ~  ; t ]  

and when account is taken of relations (3.4), the systems of equations for the equilibrium of the forces 
and moments in the different domains can be represented in the invariant form 

2 
/~/'- Y.xk'3AH '̀  =0, ( (N ' ` ) '+x ' ` ' 3 )AH '` =0 (k= 1,2) 

' `= l  

9 
~)' - Q~ - c l ~ ( - i / + ~  ~ ' ` . 3An' `  = 0 

'̀ =1 (3.12) 
9 

/~/" - c ~ ( - 1 )  TM (X '`'3 )'AH'` + ql + q2 = 0 
'`=1 

2 
L "  - c71 a~ - ~ c ~ ('c'`'3)'AH'` + ql - q2 = 0 

k=l 

The forces and moments in the different domains occurring in the equations are governed by 
(3.7)-(3.9), taking (2.4) and (2.5), (3.5) and (3.6) into account. 

Each of the terms outside the integral in the variational equation (3.11) can be represented in the 
form 

.k .rk F, (x)SU Ig' +F= (x)SU Ix~ +5 (x)SU I!,.~ = 

= {-F, (0)+ [F, (xp)-  Fz(x~)]+[F2(x~)- 6(x~) ]+  F..a (1)}15 U 

where Fi(x) is a generalized force factor and U is the generalized displacement corresponding to it. The 
end conditions for the rod, when x = 0, 1 and the conditions for the matching of the solutions of the 
systems of equations whenx = ~ and x = ~ ,  which describe the stress-strain state of the rod in adjacent 
domains, follow therefore from the variational equation (3.11) and the condition that the variations 
8U are arbitrary. 

The natural static boundary conditions when x = 0, I are written in the general case as 

~/=/4 = M = £ =/17/' =/_/= 0 (3.13) 
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If the ends of the rod are in defect-free regions, as shown in Fig. 1, then, under conditions (3.13), 
the carets over the corresponding quantities are superfluous. 

If the force factors are non-zero, the corresponding kinematic end conditions will be 

tt = 1) = W = (13 = W" = lJ' = 0 (3.14) 

Moreover, according to (1.3), the following conditions must be satisfied at the vertiqes of the layer 
separations 

'r '.3=0 when x=v~,x~ (k= 1,2) (3.15) 

The conditions for the matching of the solution when xl = ~ ,  x 1 = ~ have the form 

3 
N = N  3, H = M  3, M = ~ . M  t 

k=l 

3 
M'= ~(Mk) '  +c(X t'3-x2.3), L= M l - g  2 +G 3 (3.16) 

k=l 

L" = ( M  I - M 2 +GS) '+ t /2c (XL3  +X 2'3) 

The forces and moments in the defect-free regions when x ---> ~ - 0 and x --> x~2 + 0 are shown on the 
left-hand sides of equalities (3.16) while the forces and moments in the domains of layer separation 
when x ~ x~ + 0 and x ---> ~ - 0, respectively, are shown on the right-hand sides of these equalities. 

4. ELASTICITY RELATIONS 

In view of the complexity of the overall system of elasticity relations we shall confine ourselves to 
the case when the regions of layer separation are completely identical. Then, taking relationships 
(2.4)-(2.6), (3.4)--(3.6) and (3.9) into account, we obtain: 

for a defect-free region 

~'1 = E h b [ c l 6  u '  + I/2 h(cl2 (013) ' - cl5 w ' '  - c26 'o ' ' )  + 2h-ly3t31v12 ~] - Nt  

['t = I//2 Eh2b[Cl  2 u ' +  I//2 h(c36 ( 0[3 )" - c46 iv" - c241)")] - n t 

~ I  = 1/2 E h 2 b [ c l  5u" + ~ h(c46 ((13), _ c 6 6 w , ,  _ c45x~,,)] _ M, 

j;  = I//2 Eh2b[c26 t t  , + I//2 h(c24 ((13 ), _ c45w'"  _ c611)" ) + ~ h -I 73vi 21~] - L, 

3 
F=h~ . l~Ethk ,  ?k=Ekl~k/Eh, t k=h  k / h  

k=l  

C12 .= t3(~(I -- ~/2)' Cl3 =71tl  --72t2 

Ci5 = CI2 +CI3 , CI6 = 71 .*+72 +VII73  

(4.1) 

C23 = t3 (71tl + Y2t2). C24 ---- t3 (Cl3 + ~ Cl2) 

':'26 = t31 (C23 + I~ c36 ), C3 3 = ~ (Ttt 2 + y2 t2) 

C34 = 4/3(71t ? - 72t22) + ~t3Cl3, C36 = t2(TJ +72 + g v 1 1 7 3 )  

';'45 = c24 + t:34, c46 = c36 + c23 

c61 = c23 + c33 + 1~ t 2 (71 + 72 + ~ 73vII ), c66 = c36 + 2c23 + £33 

where E is the reduced modulus of elasticity of the three-layer stack, 7k is the relative dimension- 
less stiffness to stretching of the kth layer and tk is the relative thickness of the kth layer [2] 
(k = 1, 2, 3); 
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in regions where  layer separat ion occurs 

bl = E hb (y3v  I i u" - l/2 hc64v I i ~"  + 2h-lt.~ty3vl2~) - T 3 

= Eh3bc63 ((~3), _ w")  - m 3 

3 
i~l = ~ Eh2b[Yltlul - Y2t2u~ + I~ h(c63 ((x3), _ c56w,, _ c62~,,)] _ y. mk 

k = l  

L = I/2 Eh2b[ YI tl ul + Y2t2u2 + c64u' - I//2 h(c62 w'" + c56 v "  + ~ h-I 7'3 v! 2 v] - (m I - m 2 + m 4 ) 

N I = Ehby I [u I _ I~ ht I (w  + x))"] - T I 
, 

N 2 = E h b y  2 [u' 2 _ 1~ ht 2 (w  - 9)" ]  - T 2 

4 • C~6 = C3.~ +~C63, C62 ~- S ( ' t : ?  --Y2 t2) 

c63 = 1/12~/3t2Vll , c64 = I/6~'3t3Vll 

(4.2) 

Here,  the transverse forces in the filler for  the entire region o f  the rod are 

Q~ = G3hbt3tx 3 

" I 2 , •  - I  Q3 _ E~hb 2h-Iv  i1J+t3vl3 u --I/12t3VI31) - h  O~3V2T Tdz 
Z - -  . (4.3) 

In relations (4.1)--(4.3), the last terms, which characterize the effect o f  temperature on the stress-strain 
state of  the three-layer rod  unde r  bending have the fo rm 

3 
N, = ~. Tk. H, = c(T I - T 2) + m 3 

k=l  

3 
M, "= ~, mt~ + c ( T  I - T 2 ). 

k=l  
L, = m I - ,n 2 + m 4 + ~ : ( T  I + T z) 

(4.4) 

where  

c 
T t = E b  OtkYt STdz ( k = l , 2 ) ,  T ~ = E b v j r  0c3Y3 STdz 

l k  ht " t3 -c 

c + h l  - c  

m l = E b  alYI  I T ( z - c ) d z ,  m 2 = E b  a2Y2 I T ( z + c ) d z  
tl c t2 -c-I~ 

¢-" " c 

m 3 = E b v l r  tx373 ITzdz ,  m4 = E b v l r  ct373 ITz2dz  
t3 -c t3 -c ' 

5. R E S O L V E N T  S Y S T E M S  O F  E Q U A T I O N S  

When account is taken of the elasticity relations (4.1)-(4.4), the systems of equilibrium equations 
(3.12) can be writ ten in terms of  the notat ion adopted  for  the general ized forces and displacements  in 
the Cauchy normal  fo rm which is convenient  for  numerical  solution. 

The elasticity relations for  the case when the domains  o f  layer separation overlap, can be represented,  
after some reduction,  in vector  matrix form 

A X = d  

• , , 3 . . . . .  (5.1) 



A model of a non-uniformly heated three-layer rod deformation with delaminations 457 

d =  

-(N ~ +T~) 
N 2 + T 2  

- (~  + ~ - r / v )  

- ( h  + m3) 
3 

k=l 

L + m I - m 2 + m 4 - ~t3r/v 

77 = 2Ebt31 vi2Y 3 

where A is the symmetric matrix of the stiffness coefficients and X r is the transposed vector of the 
unknowns. 

On solving system (5.1), we find the vector of the unknowns in the form 

X = Bd (5.2) 

The components of the matrices A and B and the formulae for the isolated and defect-free regions 
are not presented here on account of their length. 

On adopting the notation 

)'l = NI ,  Y2 = ut, Y3 = N2, Y4 = u2 

) ' 5 = ]Q ,  Y6=U,  y 7 = / ~  t, ys=CX 3 

Y9 = )1~/' Yl0 = W', Yll ---- /~/" Y12 = W 

Y l 3 = L ,  Y l 4 = v  ", y l s = L " ,  Y i 6 = v  

for the generalized forces and displacements, we obtain the resolvent systems of equations for the 
bending of a three-layer rod in the normal Cauchy form for the different domains 

Yl = ./i (Y j ,  ql,  q2, T)  (5.3)  

where i , j  = 1, 2 , . . . ,  16 for the region of the rod with layer separation and i , j  = 1, 2 , . . . ,  12 for the 
defect-free regions. 

The solution of rite systems of equations (5.3) can be obtained using any stable numerical method 
such as the method of orthogonal pivotal condensation, for example. 

Note that the model of the deformation of non-uniformly heated three-layer rods which has been 
presented can be extended in a natural way to the case of plates and shallow shells. In this case, the 
number of basic unhaowns increases in the region of layer separation from 16 in the one-dimensional 
ease to 24 in the two-dimensional case. 
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